On imposing connectivity constraints in integer programs

نویسندگان

  • Yiming Wang
  • Austin Buchanan
  • Sergiy Butenko
چکیده

In many network applications, one searches for a connected subset of vertices that exhibits other desirable properties. To this end, this paper studies the connected subgraph polytope of a graph, which is the convex hull of subsets of vertices that induce a connected subgraph. Much of our work is devoted to the study of two nontrivial classes of valid inequalities. The first are the a, b-separator inequalities, which have been successfully used to enforce connectivity in previous computational studies. The second are the indegree inequalities, which have previously been shown to induce all nontrivial facets for trees. We determine the precise conditions under which these inequalities induce facets and when each class fully describes the connected subgraph polytope. Both classes of inequalities can be separated in polynomial time and admit compact extended formulations. However, while the a, b-separator inequalities can be lifted in linear time, it is NP-hard to lift the indegree inequalities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Compact Formulations

Column generation has become a powerful tool in solving large scale integer programs. It is well known that most of the often reported compatibility issues between pricing subproblem and branching rule disappear when branching decisions are based on imposing constraints on the subproblem’s variables. This can be generalized to branching on variables of a so-called compact formulation. We constr...

متن کامل

Experiments with Branching using General Disjunctions

Branching is an important component of the branch-and-cut algorithm for solving mixed integer linear programs. Most solvers branch by imposing a disjunction of the form“xi ≤ k ∨ xi ≥ k + 1” for some integer k and some integer-constrained variable xi. A generalization of this branching scheme is to branch by imposing a more general disjunction of the form “πx ≤ π0 ∨ πx ≥ π0 + 1.” In this paper, ...

متن کامل

Low-Rank Regularization for Learning Gene Expression Programs

Learning gene expression programs directly from a set of observations is challenging due to the complexity of gene regulation, high noise of experimental measurements, and insufficient number of experimental measurements. Imposing additional constraints with strong and biologically motivated regularizations is critical in developing reliable and effective algorithms for inferring gene expressio...

متن کامل

Comparing Mixed-Integer and Constraint Programming for the No-Wait Flow Shop Problem with Due Date Constraints

The impetus for this research was examining a flow shop problem in which tasks were expected to be successively carried out with no time interval (i.e., no wait time) between them. For this reason, they should be completed by specific dates or deadlines. In this regard, the efficiency of the models was evaluated based on makespan. To solve the NP-Hard problem, we developed two mathematical mode...

متن کامل

Analyzing Infeasible Mixed-Integer and Integer Linear Programs

Algorithms and computer-based tools for analyzing infeasible linear and nonlinear programs have been developed in recent years, but few such tools exist for infeasible mixed-integer or integer linear programs. One approach that has proven especially useful for infeasible linear programs is the isolation of an Irreducible Infeasible Set of constraints (IIS), a subset of the constraints defining ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 166  شماره 

صفحات  -

تاریخ انتشار 2017